
RAD-Ai46 662 SOFTWARE CONFIGURATION MANAGEMENT ACROSS PROJECT i
BOUNDARIES AND IN DISTRI..(U) ROYAL SIGNALS AND RADAR
ESTABLISHMENT MALVERN (ENGLAND) M STANLEY 1984

I UNCLASSIFIED RSRE-MEMO-3704 DRIC-BR-92?i8 F/G 912 NL

MENEEEEEEEEEEEEEEEEEEEEE
I flflfflfl

K.

I i1.0 1I& 28 25I, L3.2

LAW- .. 1220

'OPY RESOLUTON TEST CHART

K.. :- , .:: -

CIT. _ BR92718 8

RSRE
MEMORANDUM No. 3704

ROYAL SIGNALS & RADAR
ESTABLISHMENT

SOFTWARE CONFIGURATION MANAGEMENT ACROSS - -*

PROJECT BOUNDARIES AND IN DISTRIBUTED
DEVELOPMENT ENVIRONMENTS

Author: Mamrgt Stanley

C S

0 PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,

RSRE MALVERN,

" : WORCS.DT

13 wOc.ELECTE

I~lUo OCT 1 71984

f S
UNLIMITED

UNLIM[TED
ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3704

TITLE: SOFTWARE CONFIGURATION MANAGEMENT ACROSS PROJECT BOUNDARIES 6

AND IN DISTRIBUTED DEVELOPMENT ENVIRONMENTS

AUTHOR: Margaret Stanley

DATE: - January 1984

SUMMARY

.. When software development is shared between several different sites, or
host computers, or even between different development organisations, problems
which are not evident in more compact development systems arise. Many of
these problems manifest themselves in software configuration management. If
software developed on one project is to be reused on another project then
software configuration management needs to extend beyond the individual
project into a wider area. This paper addresses the problems of software
configuration management when sharing software between projects and between
host development systems, and between projects, using an integrated Programming
Support Environment. The discussion assumes the availability of some of the
facilities that were proposed for inclusion in the UK CHAPSE (CHILL Ada
Programming Support Environment).

C' Accession For

NiTIS GRA&I .0 ..
DTIC TAB" """
U:iannounc ed""
J u s t i f i c a t o ,

-0
By _0

_D i S t r ib u t i on /. . .

Availabi lity Codes ..

Dist Special

Copyright

C
Controller HMSO London

1984

omS

% ')NLI[I')TED

TITLE: Softunre Configuration Management across Project
Boundaries and in Distributed Development
Enviroments.

CONTENTS

1.0 INTRODUCTION.
2.0 THE SCM DATABASE AND TOOLS. 1
2.1 Terminology. 1
2.2 Te SCM Database. 1
2.2.1 Database Structure. 1
2.2.2 Symbology 2
2.3 initial And Derived Objects .4..... .
2.4 SCM Tools. 4
2.5 Versions. 5
2.6 Modification Of Registered SCIs 6
2.6.1 e-registration. 6
2.6.2 Software Change Requests (SCRs)
2.6.3 Example Of SCM Database Showing Registration Of 'S

A Successor 8
3.0 SHARING A PSE BETWEEN PROJECTS 9
3.1 Intersecting SCM Databases. 9
3.2 Access Controls 10
3.3 Changing An SCI 11
3.4 Example Of Dependency Across More Than One

Project. 12

3.5 SCM And Ada. 14
3.5.1 Domains . 114
3.5.2 Example Of Adding A New Variant To An SCM

Database Involving A Domain. . 0 17
3.5.3 Example Of Adding A New Successor To An SCM -9-

Database Involving A Domain. 19
3.6 Extensions To SCM Tools. 22
3.6.1 Access Controls And Shared SCIs. 22
3.6.2 Baselines And Shared SCIs. 23
3.6.3 Dependencies Between SCIs. 23
3.6.1 Changing SCIs a a * 23
4.0 DISTRIBUTE) SOFTWARE DEVELOPMENT. 23
4.1 Distributed SCM 23 -
4.2 Centralised SCM Database. 24
4.3 Sharing Software Between Host PSEs. 24
4.3.1 Importing Software From An External Source. . 25
4.3.2 Kinds Of Imported Software. 25 - -
4.3.3 Control Of Imported Software. 26
1.3.1 Exporting Software. 2650 CONCLUSIONS.2 "'
5.0 27
6.0 RERENCES.. 27

" i iii +i-9

UNLIMIE
SCM ACROSS PROJECTS fND IN DISTRIBUTED DEVELOPMENT. Page I

1.0 INTRODUCTION.

Software configuration inmgemnt (SCM) is the name given to ..
the task of recording and controlling all changes to the software
(both code ard associated documentation) throughout the life
cycle of a product. In a programming support envirorment (PSE)
with an underlying database, the software can be stored in the
databave and controlled using specially developed SCM tools and
the fctllities and checks provided by the database management
system (DR43). Reference 1 proposed a skeleton database schema
and a toolset to assist in SCM for a single software project
whose software development takes place on a single host PSE.
This paper develops the ideas in Ref. 1 and discusses the
implications both for projects that share a host PSE and for
projects where the development takes place on several different - .
host PSEs.

2.0 THE SCM DATABASE AND TOOLS.

2.1 Terminology.

When a software item is regarded as having reached a stable
state, so that further changes will need to be formally agreed,
it is registered in the project for which it was developed.
Software items that have been registered are called software
configuration items (SCIs). When a software project is planned,
a number of baselines are defined, which consist of lists of the
SCIs that will eventually be registered, with different baselines -
for different stages in the project life cycle. The SCM database
is that part of the PSE database used to support software
configuration management. It holds the information about project
baselines; the network of SCIs planned for a baseline (called
the softwre configuration network (SCN network)); the network
of registered SCIs (the SCI network) and software change requests
(SCR s).

2.2 The SCM Database.

2.2.1 Database Structure.

The SCM database for a project (see Fig. 1) will include:

1. one project entity, related to every baseline entity
associated with the project;

2. baseline entities, with membership relationships to software
configuration network (SCN) entities;

3. a network of SCN entities (SCN network) representing the
planned SCI network, with network relationships representing
the connections in the network (a membership relationship
between a baseline entity and an SCN entity indicates that
the SCN is a member of the baseline);

SC ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMNT. Page 2

4I. entities holding the body of each SCI object such as
specifications, plans, source code etc.., with relationships
giving the oomections between the. (the SCI network);

5. relationships (registration relationships) connecting the SCN ."-

network to the entities holding the body of each registered
SC1, (these relationships will be created on registration of
the SC 1,. and will bind the body of the SCI);

6. change request entities (CR entities) holding details of
software charge requests (SC~s), with membership
relationships to the projects affected by the proposed
charge;

7. change relationships between CR entities and affected SCR
entities and create relationships between CR entities and new
SCN entities created as a result of an authorised change.

A network relationship between two SCN entities indicates a
plamed relationship between the registered SCIs.

On registration of an SCI in a project a binding
registration relationship will be created to precisely one SCN
entity in the project . A binding relationship is one which
prevents deletion of the bound object and inhibits changes to the
bound object such that an attempt to change the bound object must
result in a new object.

2.2.2 Symbology.

The symbols given below are used throughout this paper. New
symbols will be introduced as required.

[) entity.

(I bound entity.

(3J Iproject entity.

!i... Ibaseline entity.

SCM entity.

[..src.. source code entity.

" design entity.

| jIJdchange request entity

~°" ".

SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMDT. Page 3

-- - membership relationship (between project and baseline;
or between CR entity and project; 0

or between baseline ard SCN entity).
-4 registration relationship (between SCN and SCI,

binding the SCI).
- dependency or derivation relationship (between SCIs).
..... network relationship (between SCNs).

... change relationship between CR entity and SCN to be changed.

- create relationship between CR entity and new SCN.

project: project

/\

baselines: Bal~
/ 1/ I
I I I1:

network I
of SCNs: SCNA1 S NA2/. ,D

*SCNAl I

registration
relationships:

network of SC1s: Ad es Li I~iI]
\F Asrc . -.

Figure 1.

In Figure 1 BaselnA2 is a baseline that includes planned
configuration items SCNA1; SCNA11 and SCNA2. Ades and Asrc have
been registered in projectA but A2des has nmt yet been
registered. SCNA2 is the SCN to which it will be connected when
it is registered in projectA. No SCRs (software change requests)
have yet been submitted fbr projectA, so no CR entities are
shown.

-0

-.

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMET. Page "4

2.3 Initial And Derived Objects.

The derivation of an object is the information needed to -
recreate the object. Objects in the SCM database fall into two
groups, initial objects and derived objects. An initial object
is any object whose derivation includes some information not held
in the database. For example an object created (perhaps from
another database object) using an editor and information input --
from a terminal is an Initial object. A derived object is one -

whose derivation is contained within the database. It is derived
(created automatically) from one or more other database objects
using software tools. Some attributes (called the derived
attributes) of a derived entity will be the same every time the
entity is derived although others, such as creation date, will be
different. The only attribute values of a derived entity which
may differ according to when the object is derived are those that
depend on its creation date. A derived entity can always be
re-created provided its derivation In retained in the database.
For example, a compiled unit, created from a source code object
using a compiler, and a set of compilation comands held in
another database object, is a derived object.

The distinction between derived and initial objects is
important because a registered initial object (except for a
domain, see section on SCM and Ada) must not under any
circumstances be modified or deleted from the SCM database,
whereas it may, under certain circumstances, be acceptable to
modify or to delete a derived object, provided its derivation is
retained.

The information that an entity is used in the derivation of
another entity will usually be held in the database by binding
derivation relationships between the derived entity and its
derivation entities. The derived entity (perhaps with the
derived attributes unset) will therefore need to be retained in
the SCI network to preserve the derivation Information. If there
is a need to save space in the SCM database it would be possible
to scan the database for all derived entities and to unset the
derived attributes.

2.4 SCM Tools.

The SCM toolset (see ref 1.) is a set of software tools
(computer programs) operating on the PSE database to provide
assistance with software configuration mnagement. They provide
facilities for creating and updating an SCM database for a
project; for registration of SC1s; for searching the database
to discover dependencies between SCM entities and between
projects; for searching the database to identify the people _

responsible for given software items; for listing the content of
project baselines and for progressing changes through the System.

J

-. ,

!,. --.!o-. I

I SCM ACROSS PROJECTS M IN DISTRIBUTE) DEVELOPMDIT. Page 5

"9 2.5 Versions.

Since software is constantly being changed, any database -
K object may exist in a number of different versions, and it may be

that several of the versions will need to exist simultaneously.
The versions that result from evolution of a database object are
called successors and are an ordering of the object
representations. In addition to the successor versions there
will be different versions of the same thing arising, for
example, because of variations in the implementation of a design,
or minor differences between realisation to cater fbr different
target hardware configurations. Versions that exist in parallel,
with no ordering between them, are called variants. For example,
different implementations of the body of an Ada package, both
satisfying the same da package specification, one written to
minimise core occupancy and the other to minimise execution time
would be variants of the Ada package body. The successors and
variants of an entity are given the same name in the database
because they all represent realisations of the same thing. They
are distinguished from each other by the variant name and the
successor number, as shown in figure 2.

/-. i -(B.3)-"-(B.4I)

(A. I)-(A.2)---(A.3)--- (A.4)--4A.5)

(C.2)-(C. 3

Figure 2 showing a set of successors and variants (A,B and C) of
a single database object (the entity nme is the same for each
version and is not showin).

Successors have numeric identifiers.

Variants: B is a revision of (A.3); C is a revision of
(A.2)

The entity has several "current" versions, viz. (B.4);
(A.5); (C.3).

Adequate precautions will have to be taken to ensure that .

the correct version is used in any software configuration. It
will probably be necessary to name successor and variant
explicitly in any reference, rather than using the default
successor and variant. The database tools my allow for a
preferred variant and a preferred successor to be used as
defaults if no version identification is given.

SCM ACROSS PROJECTS AND IN DISTRIWTED DEVELOPMNT. Page 6

"" 2.6 Modification Of Registered SCIs.

p. 2.6.1 Be-registration. .

Registered SCIs are bound so that authorised modification to V,
a registered SCI will result in the creation of a new version of
the SCI (except for domains, see section on SCM and Ada).
Re-registration is registration of a new version of a registered
SCI. It does not affect previously registered versions since the
new version Is a different entity. It my include additional
functions such as checking that the SCN to which it is being
connected is a new version of the SCN entity to which the .-
previous version of the SCI is connected and changing an
attribute of the previous SCR to Indicate that the previously
registered SCI has been superseded.

When a registered SCI is issued fbr authorised amendment,
the copy will probably go through several versions before the
amended SCI is ready for re-registration. It will be advisable
to divorce the versioning of registered SCIs from the versioning
of the issued copy to avoid unnecessary confusion. The tree
structuring of versions can be used, giving the issued version a
different variant name to assist in this process (see figure 3). . .:-

(CS.3)-+CS.4)-4(CS.5)---a(CS.6)--)-

(C. 1)-*(C.2)--(c.6

Figure 3 showing use of successors and variants when revising a
registered SCI.

The SCI has two variants, C the controlled variant and CS
the issued variant which is not under configuration management.

Successors have numeric identifiers.

Variants: CS is a revision of (C.3), that goes through
several successors before it is ready for re-registration. (C.-4)
is a revision of (CS.6), created when (CS.6) is re-registered as
a successor of (C.3).

When (CS.6) has been re-registered as (C.-4), the successor
chain for the CS variant can be deleted, since it is not under
configuration management.

• '°.°0 =

S% --

SC ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPH1T. Page 7

2.6.2 Software Change Requests (SCRs).

Consider what happens when a change Is to be made to a
registered software item. First a Software Charge Request (SCR)
(or the equivalent) must be completed, outlining and justifying
the proposed changes. A change request entity (CR entity)
containing the details; date and reasons for the proposed change
is added to the database with a membership relationship, and
approval status (initially pending) to the project entity and a
change relationship to the SCN entities affected. When the SCR
is submitted for approval a database search may be initiated to
discover possible effects of the changes. This search will
reveal any SCIs within the project that are dependent on the SCI
to be changed and the names and addresses of any people who
should be notified of the planned changes. Change relationships
will be added to the database connecting the CR entity to other
SCN entities affected by the proposed change. If the software
change request is rejected the approval status is changed to
rejected and no further action 1s required. If it is approved
the approval status will be changed to approved and the affected
baselines and SCN networks will be augmented by new SCN entities; IA -

by new versions of the SCN entities to be modified and by create
relationships from the CR entity to every new SCN resulting from
the approved change. If an approved SCR will result in
modification of a registered SCI, an attribute of the SCM to be
superseded will be set to Indicated that a new version has been
authorlsed and the SCI to be modified will be issued to the
programer responsible.

New SCIs resulting from approved SCRs will be submitted flor
registration or re-registration as appropriate. Progressing -

change requests will include searching the database for all
create relationships connected to the CR entity and checking
whether the corresponding SCIs have been registered, when the
approval status associated with the relationship between the
project entity and the CR entity can be changed to completed.

;:: [~BseI -l..n.
rS

SC,1.1 N.....1 I .
- ;,J ¢SC 1 / project I=_L

SCN12/
CR1

Figure 4 showing an approved CR entity and the resulting SCN .9-
network.

In figure 4 Baseln Initially included SCN1 and SCN11 as
members. A software change request (CR entity CR1) was raised on .._-..,
SCN1. The database search for dependent SCIs revealed that SCN11

- --------. -

SCH ACROSS PROJECTS AND I DISTRIBUTN!D DEVELOPMENIT. Page 8

would also need to be charged, so a change relationship was
created from CR1 to SCN11. Implementing the approved change
request involved creation of successor versions of SCN1 and SCH11
(SCN1.1 and SCN11.1) and the creation of a new entity, SCN12.

2.6.3 Example Of SCM Database Showing Registration Of A
Successor.

Consider projectA, as shown In figure 1. Suppose a change
request is raised In respect of Aarc. CR entity, CRA, with
membership relationship to projeotA (status pending) and with a
change relationship to SCNA11, is added to the database (see
figure 5). When the change to Aaro is authorised the status is
changed to approved and the baseline Involving Asro (BaselnA2) is .
augmented to Include a successor entity (SCNA11.1) of the SCN,
SCNA11, with a create relationship to CRA. An attribute of
SCNA11 is set to indicate that a successor has been approved. It
is necessary to create the new SCR entity so that searches of the
database can reveal whether a new version is planned that has not
yet been registered. ,

Ahen Asrc is issued for amendment, the variant name is
changed so that successors of the issued variant can be created
without concem for the successor numbers of the registered SCIs.
When the new successor is re-registered, the variant name is
changed back to the variant name of the original registered SCI, .
and the new SCI is registered as the imediate successor of the
original (as Asro.1). When Asrc.1 is registered, Asro will
remain in the SCM database but an attribute of SCNA11 will
indicate that the successor has been approved and registered.
The status of CRA in projectA (on the relationship between
projectA and CRA) will be changed to completed because the only
create relationship between CRA and the SCN network (to SCNA11.1)
corresponds to a registered SCI (Asrc.1).

_ _ _ _ _ '.1

7 7...

SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMDIT. Page 9

project: ~ ~ I

base lines: I " " 1"

network
of SCNs: SC Al .

S NAl SNl.

software chaange request: CRA

registration
relationships:

network of SCIs: e _ A2des

Figure 5.

3.0 SHARING A PSE BETWEE PROJECTS.

3.1 Intersecting SCM Databases.

An organisation developing o maintaining software for a ..

number of different projects may well wish to use the same PSE to
support more than one project. Each project will build up its
own SCM database (project entity; baselines; SCN network; SCI
network and CR entities). The SCN networks and baselines for
different projects will be disjoint even if the projects share
registered software objects.

If projects do not share any SCIs then the registration of
software items into the project, and the rest of configuration
control will take place independently for each project. However,
projects sharing a PSE database my also wish to share software.
The shared software may be a software requirement, a design, some
source code, some compiled code or executable programs. When a
software item is registered, a registration relationship is
created binding the SCI to the corresponding SCN entity of the
SCN network of the project in which the SCI is being registered.
Registration of an already registered SI in another project will
cause a new registration relationship to be created. It will not
be affected by any previous registration (see figure 6).

,0O.

' ".- - .

SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMENT. Page 10

projects: prjc prctB
I I •

baselines BaeD2BalB aselB

I I \ iI •
I I~ \ I

network. , I
of SCNs: SCNA1 J SCNA2 SCNB1

SCNA11

SCIs: Ades Ades Bdes

Figure 6.

Asre is the source code to realise the design held in Ades.
ABdes is registered in both projectA and projectB.
Bdes has not yet been registered, but SCNB2 is the SCN to whih ic
it will be connected when it is registered in projectB.

3.2 Access Controls.

Access control is an essential element in configuration
management. When setting up the control mechanism it may be
necessary to provide the project librarian with special status
giving the him greater access to registered SCIs and to SCNs and
baselines than accorded to other users.

0

To be effective access to entities, relationships and
attributes should be controlled by the DBMS. The DBMS access
controls should allow access to database objects to be set
Individually for each entity, for each relationship and for every
attribute, with access restricted according to the identity of
the user requesting access, and in certain cases according to the
tool being used to obtain access.

Access to objects in the SCM database that are owned by a
single project will normally be limited to personnel associated
with the project. Project entities, baseline entities and SCN
entities are associated with precisely one project, and access to
the attribute alues of such entities will therefore be limited
to authorised project personnel. Registered SCIs my be
registered in more than one project and will therefore be
accessible to personnel from each of the projects in which they
are registered and CR entities affecting changes in rare than one

SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMENT. Page 11

project wll need to be accessible across project boundaries.

Access controls provided by a DBMS may prevent a search of S
the database from locating or navigating through an object to
which the user has no access right. It will not be possible to
use the schema proposed in this paper for SCM in a multi-project
database with shared SCI entities unless the database searches
can locate entities owned by different projects, and can access
the values of some attributes of some of the entities.

There are at least two ways to permit searches through
several projects. One is to have a user with access permission
to every object in the database who will be responsible for all
searches requiring access beyond single project boundaries. The
other is to ensure that the D14S access controls permit
navigation through any database object, even objects where access
to individual attribute values is denied (i.e. a navigation only
search). The attributes in the database that contain the names
of the people responsible for projects will need to be readable
across project boundaries.

3.3 Changing An SCI.

If the software is shared betwen projects, changes made to
the shared software to suit one project should not invalidate use
of the software by another project. The SCM tools appropriate to
a single project PSE can easily be extended for use on a
multi-project PSE, provided the access controls do not prevent
access to objects owned by other projects.

The search for dependent entities needed for approval of a
change request could be extended to list all other projects in -,
which the affected SCI or any dependent SCIs are registered, and
the people concerned. The SCR can then be considered by all
projects in which the software is registered. If approved by any
of the projects concerned, the change will be implemented in the
usual way. The Iwdified versions of the software items will be
re-registered In turn in each approved project and connected to
the new versions of the SCNs. If the SCR is approved by one
project and rejected by another, the new version will only be
re-registered for the approving project. The other project will
not be updated to include the changed version.

When a successor or a new variant of a registered SCI has
been registered to one project and not to another, both versions
of the SCI will be registered in the database. If two versions
of an SCI are current (in different projects) variants should be
employed to Indicate that both versions are current in some
project. The tree structure of versions (successors and 0
variants) will indicate which version was predecessor to both
variants.

I • l l i. .. .

J

SCM ACROSS PROJECTS AND IN DISTRIBUTE DEVELOPMENT. Page 12

To assist in re-registration for all approved projects, the
re-registration tool could be extended to prompt the librarians
of all projects affected by a change request when a new version
of the SCI is submitted fbr re-registration. It could also
check, when a successor version is submitted for re-registration,
whether the predecessor is to remain current in some project, and
whether a successor for that SCI has already been registered in
the database. In either case the re-registration tool could warn
the user that the new version must be treated as a new variant of
the SCI, in order that both versions be regarded as current in
the database.

3.4 Example Of Dependency Across More Than One Project.

This example is intended to illustrated how a change in one
project may affect other projects sharing the same PSE database.

CRA
/ 1 . _ _ _ _

• - I 1

Bsr .. ' .

Figure 7.

In figure 7 the design ABdes is registered in both projectA
and projectB. In projectB the design is realised by two source
code item, Bare and BCsrc. The same design may have a different
source code implementation (still Involving BCsrc) in projectA.
The different implementation is not shown In the diagram.

The design Cdes is registered in projectC and is realised in
projectC by two source code items, Csrc and BCsrc. (Wsrc might
be a numerical procedure needed in the implementation of ABdes in
projectB and projectA and in the implementation of Odes in
projectC).

BCsro is registered in all three projects.

• °

0
SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMENT. Page 13

Suppose a change is proposed by projectA to SCI ABdes. A
change request entity (CRA), containing the details; date; and
reasons for the proposed change, is added to the database with a 0
membership relationship to projectA (status pending) and a change
relationship to SCNA1. The existence of a path from SCNA1
through ABdes and then through the SCN network to baselines in
two different projects (projectA and projectB) allows the
database search to identify the projects directly affected by a
change in ABdes. However, projectC will also be indirectly S
affected by a change in ABdes through the consequential change in
BCsrc, so change relationships will be created from CRA to
SCNA11; SCNB12 and SCNC11 (see figure 8) to indicate the
potential change to all three projects as a result of a change to
BCsrc. Membership relationships will be created from CRA to
projectB and to projectC, each with status pending. The search •
for projects affected by a proposed change must cover not only
the projects directly affected because they share that SCI but
also any projects that share a dependent SCI. (i.e. any
database search to assist in identifying affects of proposed
changes in ABdes should also find projectC.)

Suppose that the software change request (CRA) is approved
for projectA and for projectC but not for projectB. The status
associated with the membership relationship from projectB to CRA
will be changed to rejected and the status for projectA and
projectC will be changed to approved. The affected baselines in
projectA and in projectC will be augmented by new successors 0

(SCNAI.2; SCNA11.2 and SCNC11.2) of the SCN entities and create
relationships (not shown) will be formed from CRA to every new
SCN resulting from the approved change. The SCIs to be modified
(ABdes and BCsrc) will be issued to the programmers responsible
and the modified SCIs will be submitted for re-registration as
ABdes.2 and BCsrc.2. The re-registration tool will warn the user
that ABdes and BCsrc are to remain unchanged in another project
(projectB) so that a new variant (rather than a new successor) of
these SCIs is required. If the new variant names are ABdes/a and
BCsrc/a, the re-registration tool registers ABdes/a in projectA
by linking to SCNA1.2 (see figure 8); changes the attribute of
SCNA1 to indicate that the new version is now registered, and 0
checks for any outstanding registrations associated with CRA in
any project. The re-reglstration tool will prompt for
re-registration of appropriate SCIs (i.e. BCsrc) in projectA and
projectC. Since projectB is not to be changed, nothing will be
re-registered for projectB. BCsrc/a will be re-registered in
projectA by connecting it to SCNA11.2 and in projectC by -
connecting it to SCNC11.2 with appropriate changes to the SCN
entities.

The fact that SCNA; SCNA11 and SCNC11 are to be superseded
is shown by the existence of successors to the SCNs in the
networks and the fact that the SCIs have been superseded is shown 0
in the attributes of the superseded SCNs which are set when the
changed SCIs are re-registered.

0

SCM ACROSS PROJECTS AND I DISTRIBUTE) DEVELOPMENT. Page 14

ti- otDIroJeti\ FFTRB rojectc]

I " / I/ \I 'l l
r pase/1,1 / /JA* elnCl

I 1 \ 1 \ /I I .. c~lL;.

; -- Cries

Care- 1..0

Csr

A~des/a ac.-.

Figure 8.

3.5 SCM And Ada.

3.5.1 Domains.

If the PSE database is to be used for the development of Ada
programs it will have to cater for the Ada separate compilation
system (ee Ref. 2), which allows separately compiled units to
be combined without loss of the language related checking that
would be provided were the units compiled together. In order
that an Ada compiler can check that the separately compiled units
are compatible, and will interface correctly, it is necessary to
retain information relating to earlier compilations in a library
file. The term domain has been adopted to refer to the library
file of the Ada definition (ref. 2). A domain holds all the
separately compiled units that will eventually be combined in an
executable program, together with the associated information
needed for the required checks. A domain is in fact a composite
object consisting of a network of individual database entities,
but it may be regarded as a single entity with a membership
relationship between it and the compiled code entity of any unit
compiled into it (see figure 9). (Any relationship with a domain
is in fact a relationship with an entity inside the domain).

; S., -'

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMENT. Page 15

Tare

,.bin,. compiled unit.

L-A;&T composite objectudomain.

- - - membership relationship (between compiled unit and
domain).

-4,derivation relationship (binding derivation objects)
Figure 9.

In figure 9 the compiled unit resulting from compiling source,
arc, into domain DCH using compiler options held in entity OPT,
is bin.
Note: there will also be relationships (not shown) between the
domain and the source code entity aud between the domain and the .'
compiler options.

A domain is created and maintained by a -special database
tool called the domain manager, which preserves the internal
structure of the domain. The domain manager is used by any tool
(such as the compiler or linker) that needs to access the
internal structure of a domain. The domain manager also allows a
domain to be treated as a single, composite entity.

A compiled code entity may be a member of more than one
domain. It is compiled into one domain and then acquired into
other domains. When a compiled unit is acquired by a domain a
membership relationship is created between the compiled unit and
the acquiring domain. In figure 10 bin has been acquired from
domain DCI into domain DOM2.

OPT II r /S

Figure 10.

When a compiled unit is removed from a domain the membership
relationship between the compiled unit and the domain is severed,
but the compiled unit is not necessarily deleted from the
database. If all membership relationships between a compiled
unit and its domains are severed, the compiled unit has no
meaningful existence since it can neither be associated with
other compiled units in a domain nor can it be acquired into any

±7.
2- -.-'-

SCM ACROSS PROJECTS AD DI DISTRIBUTED DEVELOPMENT. Page 16

domain. It will therefore be deleted from the database by the
DBMS (database management system) unless some other relationship,
such as a registration relationship forces the DBMS to retain the

0

unit. If the compiled unit is needed again it must be derived
(recompiled) into a domain. Its retention in the SCM database
after it has been disconnected from all the domains prevents loss
of the derivation information.

The domain is different from other SCIs in that it is not in
fact an entity, but is a composite object consisting of a network
of entities with a membership relationship to each compiled unit
in the domain. When a source entity is compiled into a domain;
a compiled unit s acquired into a domain or a compiled unit is
deleted from a domain, the domain changes its content and its
membership relationships. An empty domain my be registered and
compiled units added as they are registered. A domain is
therefore permitted to change its content and relationships after
registration as an SCI. No other initial objects registered in
the SCM database may be modified although derived objects may be
modified In that they may have the derived attribute unset,
provided the derivation is retained.

A domain should not be registered in more than one project
because an alteration to a domain in one project will
automatically apply to any other project owning the domain,
whether the alteration was authorised or not. The registration
tools can ensure that a domain submitted for registration is not
already registered In another project. If It is registered in
another project the tool could create a new domain and acquire
into it any compiled units needed in both projects.

A domain cannot hold more than one version of any unit
compiled into it. If a new version of a unit is compiled into a
domain the membership relationship linking the previously
compiled unit to the domain s severed.

If a new version (src.2) of sre (figure 10) is compiled into
domain (DOM), the resulting new version (bin.2) of the compiled
unit (bin) will replace bin in DOM but not in D042. The 7.

membership relationship between DO and bin will be deleted (see
figure 11).

%S

a.P.

" deleted membership relationship.
Figure 11.

SCH ACROSS PROJECTS AN DI DISTRIBUTED DEVELOPMENT. Page 17

If a new successor of a compiled unit is to be added to the
3-4 database the successor can be compiled or acquired into the
domain that contains its predecessor. The predecessor will cease
to be a member of the domain but its derivation will be preserved
because it is registered. The historic information that it was
formerly a member of the domain will be preserved n the SCN
network.

If a new variant of a compiled unit is to be added to the
SCM database a new domain has to be created to hold the new
compiled variant so that the new variant does not disconnect the
old variant from its domain (assuming each variant is current in
some product). Since the new compiled variant will probably be
interfaced to units already compiled into the old domain, the
necessary units must be acquired from the old to the new domain.

3.5.2 Example Of Adding A New Variant To An SCM Database
Involving A Domain.

This example is intended to illustrate the effect of 0

creating a new variant and re-registering an object registered in
a given baseline, where a domain is involved in the baseline.

Consider a project, projQ with a baseline EQ. EQ contains
an SCN network with entities, SCQ1, SCQ2 etc.. The software
objects to realise this network are two source code objects Qlsrc
and Q3sro with the source code objects compiled into domain D04
as Qlbin and Q3bin, as shown in figure 12:

I roI

SCQ " .I I .

I SCQ11 I Q32

Qlsrc src

Q3bin

Figure 12.

Now suppose that a new variant of Qlsro (viz. Qlsrc/a) is
to be created as a result of an SCR (CR1). The baseline, BQ,
will be augmented to include the new variant of SCQ1 (SCQ1/a) and
its dependents (SCQ11/a). The tool to augment the baseline and
to create its associated SCN network will need to form

01

SCM ACROSS PRJBCTS AND I DISTRIBUTED DEVELOPMENT. Page 18

relationships between DQ and the new variants of the SCNa ard
between the SCR (CR1) and the new variants of the SC~s. it will
be necessary to create an SCN (SCQ2/a) for the new domain and to
register a domain (DC142) for the augmented baseline to contain
the compiled units such as QObin, and to ensure that all
registered compiled units that have no planned new variant are
acquired from the parent domain (DOM4). Since QMin is derived
from (and in therefore dependent on) Qisro the new domain will
also eventually contain Qlbin/a, compiled from Qlsro/a. The
resulting database for IBO is shown In figure 13.

t SCQl SC 1/ Q3

SCQ2

rsr

Figure 13.

When Qlsro/a and 01bin/a are ready for re-registration, the
re-registration tool can acquire Qlbin/a Into the new domain,
DON29 from the domain in wicih it was tested. The modifed
software item can then be connected to the SCN network by
setting up the relationships between the SCN network and the new
versions (see fligure14)

- . -. . -.-.

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPM4T. Page 19

~ - - - - -- -
-..

I I ' I ' I I

CI SC 1/a I II
I . I I.S i " ... 1-.. ' C

1 re
1 arcl sre

ibm~ -- Q.bi

* lb , 1. -.l''

Figure 114.

Now if, for example Qisrc had been registered In another
project (project, say), then re-registration of the SCI in projQ
would have no effect on the SCIs registered in projectR. If the
change to a shared SCI in proJQ was to result in the same change
in projeotR, it would be necessary explicitly to update the SCN
networks in projectR in the sam way as in projQ, and to
re-register the affected SCIs in projectH.

3.5.3 Example Of Adding A New Successor To An SCM Database
Involving A Domain.

This example is intended to illustrate the effect of
creating a new successor and re-registering an object registered
in a given baseline, where a domain is involved in the baseline.

Consider the SCM database shown In figure 12. Now suppose
that a new successor of Q1src (viz. Qlarc.1) is to be created,
following approval of an SCR (CR2). The baseline, BQ, will be
augmented to include the new successor of SCQ1 (SCQ1.1) and its
dependents (SCQ11.1) and CR2 will have change relationships to
SCQ1 and SCQ11 and create relationships to SCQ1.1 and SCQ11.1.
It will not be necessary to create a new domain since Qlsrc.1 can
be compiled Into the existing domain, thus disconnecting Qibin
from the domain. The resulting database lbr BO is shown in
figure 15. Attributes of SCQ1 and SCQ11 will be set to Indicate
that the SCIs are being superseded by successors.

SCH ACROSS PROJECTS AND I DISTRIBUTED DEMEOPMENT. Page 20

- I 1 I i.1 I f SCQ3

122

lorre

L -.

Figur 15.

When Qlsra.l and Qlbin.1 are ready for re-registration, the
re-registration tool can connect the modified softwre item to
the 5CR network by setting up the registration relationships
between the SCN network and the new versions (see figure 16).
Qibin will be disconnected from DOM when Qlbin.1 is added. Note
that although Qibin is not now In a domain it is retained In the
504 database by its registration relationship to SCQ11. A

I database search would reveal that the new successor had replaced0
the old because of the relationship from SCQ1 1 to SCQ2 which is
no longer reflected in the SCI network.

17.

h 0
304 ACROSS PROJECTS AND IN DISTRIBUTD DEVELOPMENIT. Page 21

I ~ SCi SCQ1.1 I

I SC 11 SC 11.1=** SCQ 2
I SCQ

CR2

1 arc
1 Q3src .

bin
S-p

l[b 1.11

Figure 16.

Now If, for example Qisro had been registered in another
project (projX, say)pthen re-registration of the SCI in projQ
would have no effect on the SCIs registered in projX because DG4
would not also be registered in proiX.

Because Qisrc and QMin are still current in some project
(the change request was rejected for proj1E, the re-registration
tool will only re-register the new versions as new variants
(Qlsrc/a and Qlbin/a). The domins will still be handled as for
new successors because the SCN entities (SCQ1.1 and SCQ11.1) are
successors (figure 17).

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMEIT. Page 22

I I I ' _ .:
SSCQ1.lI-s

I~~ir I-' '." .-.

,.Ql.... b.in
r - .- .

L2

\-i -- " CR2

Sal b:Xbin I/ r. " -" --,,O

/ lb nl/ \...,-,

,3qX I ."-'

Figure 17.

Thus a change in a shared software item owmed by one project
cannot aocidentally esult in a change to the software item in
ano th er project.,,,

3.6 Extensions To SCM Tools.

3.6.1 Access Controls And Shared SCa. S

When an SCI is registered, the registration tool my change
the access permits of the SCI to restrict access to specified
users using specified tools. * here an SCI is shared, access may
be permitted from either project. However, the tools for issuing
a copy of the SCI will need to check that all proper authorities
have been obtained, including, if necessary, the authority of
other projects having acoess rights to the SCI.

CR entities that result in changes to sre than one project
mut be accessible from each affected project. When an SCR is
found to be relevant to a project during a database search, it
will be necessary to make the CR entity accessible to the
project.

S

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMENT. Page 23

The access controls imposed by restricting access to
specified users and specified tools must not prevent authorised -
access to the information that a registered SCI is shared, 0
together with access to information to indicate by whom the SCI
is shared. The information required for control of shared SCIs
and of shared SCRs can only be obtained if some means is supplied
of authorising access to objects owned by any project using the
SCM database.

3.6.2 Baselines And Shared SCIs.

When listing the content of a baseline, there should be a
facility to indicate the SCIs in the baseline that are shared
with another project, when sharing started and the projects that
share the SCIs.

3.6.3 Dependencies Between SCIs.

When listing SCIs dependent on any given SCI, the listing B
facility must include a trace of SCIs dependent through sharing
of SCIs between projects and through sharing of dependent SCIs
between projects.

3.6.4 Changing SCIs.

When progressing defect reports and change requests through
the system the tools must include reports for all affected
projects.

The facility to list the authorisations required for a given S
change, the SCIs affected, the people responsible and the status
of the change will need extension to include authorisations from
other projects.

4.0 DISTRIBUTE SOFTWARE DEVELOPMENT. 0

4.1 Distributed SCM.

Software for a project will usually be developed using a
single host programming support environment, with a computer or a
network of computers centred on a single database. The SCM
database will therefore be contained in the single host database.
It may, however, be necessary to spread software development over
more than one host, if, for example, several companies cooperate
on the development of a project or if a single company has
separate development sites or because the work load is too great
for a single host. If several hosts are being used, separate SCM
databases should exist on each host. Even if the different hosts
are electrically connected, it is not suggested that a single
distributed SCM database be spread over the different hosts. The
problems of distributed databases are beyond the scope of this

9

SCM4 ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMET. Page 2-4

paper. When several SCM databases exist fOr a single project
some method is needed of checking whether the SCM databases on
the different hosts are mutually consistent. This amy have to be
done by visually checking the listings of the different SCM
databases produced by the different hosts, although it each host
is using the seane PSE design and the sam database schema it
should be possible to develop a tool to check for mutual
consistency., If inconsistency is detected it must be possible to - .
remedy the situation by changing one of the databases. .0

4.2 Centralised SCM Database.

It my be desirable for overall anagement control to have
some central form of configuration management database for the
project, while still leaving each host responsible for its own
configuration management. A complete SCH database might reside
on one host (the central database). The individual hosts would
have the aster (i.e. correct) copy of their om part of the
overall network, and the central database would not necessarily
always be consistent with the individual host SCM databases. The
central database would, however, probably be sufficiently
accurate for use as a general Information system but not for
change control. It would, of course, be necessary to implement "--"
checks so that the differences between the central database and
the individual host databases could be detected and corrected.

When any change is made to an SCM database (e.g. an SCI is
registered on any host, or a baseline is amended or created) it
would be necessary to have standard procedures for notifying the
central database. When an SCI is registered on a separate host a
duumy SCI might be registered in the central database to hold
information such as the location of the actual host holding the
registered SCI, the name of the registered SCI on the actual host
and the date of registration.

4..3 Sharing Software Between Host PSEs.

One of the results of distributing the software development
of a project or of reuse of software items by other projects or
of sharing software libraries is that certain software items will
need to be transfered to other hosts after registration in their
local SCH database. These items will therefore appear in more
that one SCM database, a supplier database and one or more
customer databases. The information that such items have been
exported or imported must be included in the P3E database.

-.. o "-..

S .o .

S

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMENT. Page 25

4.3.1 Importing Software From An External Source.
0

The imported software will need to be incorporated into the
PSE database and the necessary entities and relationships will
need to be set up. The procedures for importing items into a PSE
database will be basically similar whether the items are supplied
from the same type of database on the same host, or the same type
of database on a different host or from a totally fcrliegn
environment. The tools to perform the actual transformation from
one environment to another will be simpler if the two
enviroments are similar and will differ according the the medium
(e.g. electrical connections or magnetic media) used to effect
the transfer. It will be useful to extend the recipient database
schema to include a supplier entity type that will hold the 0
details of the software supplier, including the host PSE;
address; contact name and any relevant contractual details and
restrictions on the use of the imported software. A relationship
could then be set up betwen a supplier entity and any software
supplied from an external source. The tool that transforms the
imported software into a form suitable for inclusion in the PSE
database will need to create an entity of appropriate type in the
PSE database with a relationship to a supplier entity, and will
need to set the attributes of the supplier entity if they are not
already set.

4.3.2 Kinds Of Imported Software.

The software to be imported might be text such as
documentation or source code or it might be compiled units or
executable programs, with or without the source code from which
the compiled code was originally derived.

Let us consider first the case where text objects are to be
imported. Once the entity and relationship to the supplier
entity have been set up, the text can be copied into an
appropriate attribute of the new entity.

If the imported object is compiled code and if no source
code is provided there can be no relationship to the source code,
and special tools will be needed to enter such units into a PSE
database. (The relationship between source text and compiled
unit is not mandatory.) The problems of importing compiled code
into a domain from a foriegn PSE, including making any necessary
transformations to accomodate the structure of the domain and the
relationships within the domain, are beyond the scope of this
paper. If we assume that tools can be devised to import compiled
code from a foriegn PSE, the tools could insert the compiled code
into some master domain and the inserted compiled unit could be
acquired from the master domain in the usual way by any project
wishing to use it. The problems of importing code compiled from
a language other than Ada will be similar to those involved when
compiling source into a domain using the pragma "interface" (see
ref. 2 para. 13.9).

_-9

U. -, r. .. v: - . . . 1 J- E.L .- .. , ; . .- . -/ _ -. _.- _ - - = . _ . _ _ _

SCM ACROSS PROJECTS AND IN DISTRIBUTE) DEVELOPMDT. Page 26

If the imported object is an executable program with neither
supporting compiled code objects nor source code, then the
importing tool will simply need to copy it into an entity of 0
appropriate type, transforming it if necessary to make it
executable in its new environment.

4.3.3 Control Of Imported Software.

There should be no problems in including imported software
items under configuration management by registering them in the
usual way. The problems of importing software from external
sources impinge on configuration management in that the
derivation and dependency information will not be the same as if ...

the software development was all handled from one database. A -.4

software change request that affects an imported item must be
treated with special care. If the software supplier is willing
and able to cooperate in making approved changes, then the tools
must assist in ensuring that he is included in the list of
authorities involved in approving a change. If, on the other
hand, the imported software is a frozen product, any change
request that implies a change to the imported software must be
rejected. If such information is held in the database, the SCM
tools could assist in the rejection. If a change is made in an
imported software item by a supplier, the importer has the option
as to whether to implement the change. This can be handled -

through the normal software change request procedures. -.

If a defect is detected in some imported software, the
relationship to a supplier entity will make it easy to discover
to whom the defect report should be sent.

4.3.4 Exporting Software.

If software is to be exported from a PSE,the schema should
be extended to hold a customer entity type, with similar
information to that held in the corresponding supplier entity
type. An exported item will then have a relationship to the
customer entity. Any change request processing can then ensure
that lists of affected customers are available, so that, where
appropriate, the customer can be included in the approval
process. Similarly, when a change has been implemented, the
customer can be informed, and supplied with the amended software. .-

Defect reports can be distributed to customers using a tool
to list all affected customers.

-- _

0.•o•o

SCM ACROSS PROJECTS AND IN DISTRIBUTED DEVELOPMENT. Page 27

5.0 CONCLUSIONS.

Frequently software for a project will be developed using a
single host development environment and therefore configuration
management will be done on that host. Even when projects share
software items on the host, separate networks of baseline
entities and SCNs should be maintained fbr each project. The
sharing of the SCIs will be indicated in the database by
registration relationships from the SCI to each of the SCNs that 0
it embodies. The SCM tools will need to be extended to use these
additional relationships to discover the implications of sharing
SCIs when software changes are proposed or implemented. The
sharing of SCIs may have indirect implications for projects that
do not directly share the object to be changed, and the tools
will therefore need to follow through all the dependencies of any .
item to be changed.

In order for the proposed SCM schema and tools to work the
access controls imposed by the DBMS must permit database searches
across project boundaries. This may either be achieved by
permitting searches through database objects while denying access
to the attributes of the objects or by giving a priveleged user
access to all objects in the PSE database and requiring that all
the searches for implications of proposed changes to registered
software in any project be performed by the priveleged user.

If software development for a project is spread over a
number of different host PSEs, separate SCM databases should
exist on each host. It may also be useful to create a central
database with dummy SCIs registered to represent SCIs registered
on other hosts instead of importing copies of the SCIs to the
central database. The central database could then be used as a
source of information on the status of the project as a whole,
with the individual hosts still retaining control of the detailed
SCM.

It will be necessary to import and export software items to
and from host PSEs. In order to control imported or exported
software there should be relationships to entities representing
the extemal host so that tools searching for possible effects of
proposed changes can indicate that other host PSEs should be
considered.

6.0 REFERENCES.

1. M.Stanley. "Software Configuration Management in an
integrated PSE.", RSRE Memo. 3578.

2. US DoD "Reference Manual for Ada Programing Language.", July
1982.

DOCUIENT CONTROL SNEET U N LIM ITED..
Overall security classification of sheet .

(As far as possible this sheet should contain only unclassified information. If it Is necessary to enter _
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. rRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memorandum 3704 nclassifi11ssfication

5. Originator's Code (if 6. Originator (Corporate Author) Eae and Location 0
known) ROYAL SIGNALS AND RADAR ESTABLISHMENT

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title
SOFTWARE CONFIGURATION MANAGEMENT ACROSS PROJECT BOUNDARIES AND
IN DISTRIBUTED DEVELOPMENT ENVIRONMENTS .-

7a. Title in Foreign Language (In the case of translations)

lb. Presented at (for conference napers) Title, place and date of conference -

" 8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

STANLEY, M ..

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement
UNLIMITED

Descriptors (or keywords)

continue on separate piece of oaoer

Ab.Aract When software development is shared between several different sites,
or host computers, or even between different development organisations, problems
which are not evident in more compact development systems arise. Many of these
problems manifest themselves in software configuration management. If software
developed on one project is to be reused on another project then software con-
figuration management needs to extend beyond the individual project into a wider
area. This paper addresses the problems of software configuration management
when sharing software between projects and between host development systems, and
between projects, using an integrated Prograning Support Environment. The
discussion assumes the availability of some of the facilities that were proposed
for inclusion in the UK CHAPSE (CHILL Ada Programming Support Environment).

*NOV

47,V$k;h
ACE

~ .g 4
. t ~I* 4.1

I7 7

~ 4A

AA

.... 4

